((10+5h)/(h^2+4h+5))-(10/5)=0

Simple and best practice solution for ((10+5h)/(h^2+4h+5))-(10/5)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((10+5h)/(h^2+4h+5))-(10/5)=0 equation:



((10+5h)/(h^2+4h+5))-(10/5)=0
Domain of the equation: (h^2+4h+5))!=0
h∈R
We add all the numbers together, and all the variables
((5h+10)/(h^2+4h+5))-2=0
We multiply all the terms by the denominator
((5h+10)-2*(h^2+4h+5))=0
We calculate terms in parentheses: +((5h+10)-2*(h^2+4h+5)), so:
(5h+10)-2*(h^2+4h+5)
We multiply parentheses
-2h^2+(5h+10)-8h-10
We get rid of parentheses
-2h^2+5h-8h+10-10
We add all the numbers together, and all the variables
-2h^2-3h
Back to the equation:
+(-2h^2-3h)
We get rid of parentheses
-2h^2-3h=0
a = -2; b = -3; c = 0;
Δ = b2-4ac
Δ = -32-4·(-2)·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3}{2*-2}=\frac{0}{-4} =0 $
$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3}{2*-2}=\frac{6}{-4} =-1+1/2 $

See similar equations:

| 5-4f+8=7+2f | | (6x−8)=−(8−6x) | | 3x/4+6=5x/2-x | | 7d-5=8d-10 | | x/1.2,x=0.06 | | 32+7x=8+4x | | x-7/3=x+5 | | 8q-2=6q | | 5p=8+7p | | 78+n/4=62 | | 1000x+2500+325-325=x | | 4.8+10m=6.23 | | 10+7h=-10+9h | | z/3+9=-66 | | (9^3)12=9n | | 3x-x+5=7 | | 11-8p=3p+7 | | 2x/5-2=3x/10 | | 9(y+1)=11-7y | | -1x-(-13)=21x-7-2 | | 28-6x=-x+32 | | 3+2k+5K=100 | | 16x-9x=28 | | 9x/2=5+3x | | w/5-22=-21 | | 3-3x=90 | | c/5+6=2 | | 12s−3s3=0 | | 7+7x=-21 | | b/6+2=4 | | 10-3k=1-7k-5k | | 6x+13=2x |

Equations solver categories